“高數(shù)叔”成立于2016年!捌者m教育”的提出者,勵志打造所有人都“普遍適用”的課程,從高等教育的基礎(chǔ)課程——高等數(shù)學(xué)出發(fā),延伸至數(shù)學(xué)、理工、經(jīng)管等領(lǐng)域課程,讓學(xué)習(xí)變得有趣,讓學(xué)習(xí)成為時尚;“速食教育”的領(lǐng)導(dǎo)者,幫助被應(yīng)試教育折磨的小伙伴們快速學(xué)習(xí)、快速復(fù)習(xí),以“21天學(xué)高數(shù)”“菜鳥去考研”為代表的系列課程深受學(xué)生喜愛
本書是教材《微積分(第四版)》的配套用書,是《<微積分(第四版)>學(xué)習(xí)參考》的縮編本,旨在幫助學(xué)生自學(xué)以及方便教材教學(xué),本書的章節(jié)安排與教材相同,內(nèi)容主要包括教材習(xí)題的解答與注釋。
本書是根據(jù)高等院校各專業(yè)對“高等數(shù)學(xué)”的學(xué)習(xí)、復(fù)習(xí)及應(yīng)試要求而編寫的。本書主要內(nèi)容包括函數(shù)與極限及連續(xù)、一元函數(shù)微分學(xué)、一元函數(shù)積分學(xué)、多元函數(shù)微分學(xué)、二重積分、常微分方程、無窮級數(shù)、向量代數(shù)與空間解析幾何及多元函數(shù)微分學(xué)在幾何上的應(yīng)用、多元函數(shù)積分學(xué)及其應(yīng)用。本書各章節(jié)均由三部分組成,即考點內(nèi)容講解、考點題型解析、經(jīng)
本書分上、下兩冊.本冊系統(tǒng)地講述了線性泛函分析的基本思想和理論,分五章:距離線性空間與賦范線性空間;Banach空間上的有界線性算子;自反空間、共軛算子與算子譜理論;Hilbert空間上的有界線性算子以及廣義函數(shù)論簡介.本冊注重講述空間和算子的一般理論,取材既有基礎(chǔ)的部分又有深刻的部分,讀者可以根據(jù)需要進行適當(dāng)?shù)倪x擇.
本書是多復(fù)變函數(shù)論方面的入門書,著重介紹多復(fù)變數(shù)的解析函數(shù)、正交系與核函數(shù)、解析映照、零點與奇異點等方面的基本結(jié)果及存在的主要問題。這些問題有的已獲得一些結(jié)果,有的尚待進一步研究。
本書始于實數(shù)的基本理論.接著進入一元微積分學(xué),包括極限、連續(xù)、級數(shù)、微分、復(fù)數(shù)、積分等,重視它對現(xiàn)代數(shù)學(xué)的啟迪,適時介紹些抽象概念(如對基的極限),以益于拓展到一般分析學(xué)回其次探討拓?fù)淇臻g(特別是度量空間、歐氏空間Rn)的映射,展開多元微積分學(xué),其中涉及隱函數(shù)定理、集合上的積分、流形(特別是Rn中的曲面)及微分形式、流
本書以Hilbert空間中線性算子數(shù)值域以及相關(guān)問題為主線,對線性算子數(shù)值域基本性質(zhì)以及應(yīng)用進行闡述.本書的內(nèi)容框架如下:第1章主要介紹Hilbert空間中線性算子數(shù)值域.第2章主要介紹Hilbert空間中有界線性算子數(shù)值半徑.第3章主要介紹Hilbert空間中一些特殊算子的數(shù)值域.第4章主要介紹由Hilbert空間中
基礎(chǔ)拓?fù)鋵W(xué)是數(shù)學(xué)的重要分支,內(nèi)容豐富且應(yīng)用面廣.本書以點集拓?fù)鋵W(xué)為基礎(chǔ),通過對一般拓?fù)鋵W(xué)、測度論、拓?fù)湎蛄靠臻g、拓?fù)淙杭巴負(fù)鋭恿ο到y(tǒng)的一些專題進行論述,向讀者簡要介紹拓?fù)鋵W(xué)中的一些基本知識、研究思想以及解決問題的方法,以較少的篇幅展現(xiàn)拓?fù)鋵W(xué)中的一些主要內(nèi)容.本書主要內(nèi)容包括:集合與序集、可測映射與可測空間、拓?fù)淇臻g、幾
本書是對作者近幾年取得的有關(guān)群組評價方面的研究成果進行的系統(tǒng)整理與歸類。全書共九章內(nèi)容,可分為三塊:第一塊為子群評價研究的理論基礎(chǔ),包含第一章至第三章,主要講述子群評價的研究背景、理論前提與子群的劃分;第二塊為共識度的測算,包含第四章和第五章,主要闡述如何從評價結(jié)果和評價過程兩個角度測算子群評價意見的共識度;第三塊為群
廣義逆:理論與計算(第二版)(英文版)